Thesis Defense: : HYPERSONIC AERO-OPTIC MEASUREMENTS IN A HIGH-PRESSURE SHOCK TUBE

Thursday, October 26, 2023 12:15 a.m. to 3 a.m.

Announcing the Final Examination of Jonathan McGaunn for the degree of Master of Science

The high-pressure shock tube facility (HiPER-STAR) at the University of Central Florida (UCF) is analyzed experimentally to demonstrate the practicality of hypersonic aero-optical testing in an impulse facility without the use of an expansion nozzle or acceleration tube. The investigation analyses driver gas blending with helium and hydrogen to raise the speed of sound ratio in an attempt to increase the Mach number for aero-optics testing. HiPER-STAR has a unique ability to withstand pressures up to 1000 atm and run in a double diaphragm configuration allowing for a significant pressure differential to be created between the driver and driven sections. Results from this study show that hydrogen and helium blending can drastically increase the maximum Mach number of HiPER-STAR; Mach numbers up to 15 were generated at a variety of altitudes. Experiment test time varied on shock velocity but was purely dependent on the arrival of the reflected shock wave to measurement locations. The aero-optics data that was collected and visually captured with a high-speed camera clearly shows beam aberration due to density gradients and a diminishing light intensity indicating that hypersonic aero-optical phenomenon can be captured reliably and repeatedly with a shock tube

Committee in Charge:
Subith Vasu, Chair, Mechanical and Aerospace Engineering
Michael Kinzel, Associate Professor at the University of Central Florida
Alain Kassab, Professor at the University of Central Florida

Read More

Location:


Contact:

College of Graduate Studies 407-823-2766 editor@ucf.edu

Calendar:

Graduate Thesis and Dissertation

Category:

Uncategorized/Other

Tags:

defense Thesis Department of Mechanical and Aerospace Engineering